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ABSTRACT

The reported experiments were performed by Oak Ridge National Laboratory (ORNL) at the Battelle
Northwest Laboratory’s (now Pacific Northwest National Laboratory) critical experiments facility at
Hanford, Washington in 1981 and used 16 days of critical facility time, not including 10 days for setup
and removal of ORNL equipment. These measurements were to assess the capability of the Cf source-
driven noise analysis (CSDNA) method to measure the subcriticality (keff) of mixed U-Pu nitrate
solutions. In addition to the CSNDA measurements, measurements were also performed near delayed
criticality where CSDNA measurements cannot be performed. This report documents the experiments that
were not reported at that time by presenting the ORNL experimental results and any online analysis
performed during and shortly after the measurements. The mixed nitrate solution had a U concentration at
188 grams per liter (g/L), a Pu concentration of 280 g/L, free acid normality of 2.80, H ion molarity of 5.9
and a specific gravity of 1.754 g/cm?, a 2*°Pu isotopic content of 7.981 wt. %, and a 2**U isotopic content
of 0.724 wt. %. The stainless-steel tank for the solution had an inside diameter of 35.38 cm, an outside
diameter of 35.53 cm, a height of 56.72 cm, and bottom thickness of 0.9525 cm. A Zircaloy pipe with a
3.1496 cm outside diameter, a 2.7788 cm inside diameter, and bottom thickness of 0.635 cm was
available for insertion of the Cf source in the center of the fissile solution. The Cf source was also located
at the outside surface of the tank (solution height varied from 10 to 53 cm) and in the center of the
solution (solution height varied from 10 to 60.7 cm). The CSDNA measurements were not analyzed
online to determine the subcritical neutron multiplication factors. At all subcritical states, the break
frequency noise analysis data was fitted to obtain the prompt neutron decay constant. The neutron
multiplication factors were determined for the two configurations of the measurements near delayed
criticality. The subcritical neutron multiplication factors from the CNSDA measurements can be obtained
with further analysis. However, the near delayed critical configuration, the prompt neutron decay
constants, the count rates, and the measured cross and auto power spectral densities can be calculated
directly for benchmarking. Much of data presented in this report are from ORNL notes—not in the ORNL
logbooks. For the final benchmark analysis, the data from the Battelle Northwest Laboratory (which
operated the critical facility in 1981) critical facility logbook should be consulted and be incorporated
where appropriate. The purpose of this report is to document the experimental information for the
measurements performed so that at a later date researchers could perform the required uncertainty and
calculational analyses and documentation to use these data for an International Criticality Safety
Benchmark Program (ICSBEP) or Nuclear Energy Agency benchmark. The data from these
measurements are available from the ORNL Records Management Services Department, and the logbook
is available from ICSBEP at Idaho National Laboratory.

Preparation of the present report is part of a larger cooperative effort between Idaho National Laboratory
(INL) and Oak Ridge National Laboratory (ORNL) to document more than 15 undocumented critical and
subcritical experiments enumerated in ORNL/TM-2019/18 and performed by ORNL at ORCEF and other
USDOE critical experiments facilities using more than 500 operational days of critical facility time.

1. INTRODUCTION

The applicability of the Cf source driven noise analysis method (CSDNA) [1] to determine the
subcriticality of mixed U-Pu nitrate solutions was evaluated in 1981 in a series of measurements at the
critical experiment facility of the Battelle Northwest Laboratory (now Pacific Northwest National
Laboratory) [2]. In addition to the CSNDA measurements, inverse kinetic rod drop (IKRD) measurements
[3] were also performed close to delayed criticality where CSDNA measurements cannot be performed.
Because of funding limitations at the time, the results of the measurements were not documented and only
limited online analyses were performed. This report, although written much later, documents some of the
preliminary online results. These measurements were performed with a mixed U-Pu nitrate solution and



had a U concentration at 188 grams per liter (g/L), a Pu concentration of 280 g/L, free acid normality of
2.80, H ion molarity of 5.90 and specific gravity of 1.754 g/cm?, 24°Pu isotopic content of 7.981 wt. %,
and 2*U isotopic content of 0.724 wt. %. The stainless-steel tank for the solution had an inside diameter
(ID) of 35.38 cm, an outside diameter (OD) of 35.53 cm, a height of 56.72 cm, and bottom thickness of
0.9525 cm. A Zircaloy pipe with a 3.1496 cm OD, a 2.7788 cm ID, and bottom thickness of 0.635 cm was
available for insertion of the Cf source on the axis the cylindrical fissile solution. The Cf source was also
located at the outside surface of the tank (solution height varied from 10 to 53 cm) and in the center of the
solution (solution height varied from 10 to 60.7 cm). At all subcritical states, the break frequency noise
analysis data was fitted to obtain the prompt neutron decay constant [4]. The neutron multiplication
factors were determined for the two configurations of the measurements near delayed criticality. Without
further analysis of the CSDNA measurements to obtain the subcritical neutron multiplication factors, only
the near delayed critical, the prompt neutron decay constants obtained, the measured count rates, and the
measured cross and auto power spectral densities can be benchmarked by direct calculation of the
measured data. Most data presented in this report are from Oak Ridge National Laboratory (ORNL) notes
and memory and are not in the ORNL logbook. The purpose of this report is to document the
experimental information for the measurements performed so that a later date researchers could perform
the required interpretation of the experimental data, the required uncertainty and calculational analyses,
and documentation to use these data for an International Criticality Safety Benchmark Program (ICSBEP)
or Nuclear Energy Agency (NEA) benchmark. The data from these measurements are available from
ORNL’s Records Management Services Department, and the logbook [2] is available from ICSBEP at
Idaho National Laboratory.

Preparation of the present report is part of a larger cooperative effort between Idaho National Laboratory
(INL) and Oak Ridge National Laboratory (ORNL) to document more than 15 undocumented critical and
subcritical experiments enumerated in ORNL/TM-2019/18 [5] and performed by ORNL at ORCEF and

other USDOE critical experiments facilities using more than 500 operational days of critical facility time.

2. DESCRIPTION OF MATERIALS

The main materials in these experiments were the fissile solution, the tank, and the location in the room.
2.1 FISSILE SOLUTION

The properties of the fissile solution are given in Table 2.1. The isotopic contents of the fissile material
are given in Table 2.2.

Table 2.1. Properties of fissile solution.

Property Values
Pu content 280.4 g/L
U content 188.4 g/L
Free acid content 2.80
Specific gravity 1.7537 g/lcm?®
H ion molarity 5.90
Chemical composition of nitrate Pu(NOs)sand U(NO3);




Table 2.2. Isotopic analysis of fissile material.

Isotope Weight percent
238py 0.030 + 0.004
239py 91.50 + 0.050
240py 7.891 + 0.050
241py 0.509 + 0.050
242py 0.060 + 0.001
238y 0.013 + 0.002
234y 0.010 + 0.002
23 0.724 + 0.007
236y 0.030 + 0.002
238y 99.223 + 0.010

2.2 EXPERIMENTAL TANK AND LOCATION IN THE ROOM

The experiment tank was of stainless steel with a height of 56.72 cm, a diameter of 35.38 cm, an OD of
35.54 cm, and a height of 56.72 cm. The thickness of the bottom of the stainless-steel tank was 0.9525
cm. The reentrant tube into the solution for the Cf source was Zircaloy with a density of 6.57-g/cm?. The
ID of the reentrant tube was 2.7788 cm; the OD was 3.1496 cm, and the bottom thickness was 0.635 cm.
The bottom of the solution tank was 15.87 cm. above the bottom of the large empty reflector tank that
surrounded the cylindrical solution tank. The reflector tank side dimensions were 160 and 179 cm. The
bottom of the source tube was 1.587 cm above the bottom of the stainless-steel solution tank and in the
axis of the tank. A section of moderator (designated as the safety blade) was adjacent to the radial surface
of the experimental tank for configurations close to delayed criticality. This provided an emergency
shutdown mechanism, which was a requirement for operations near delayed criticality. Quick removal of
this moderator allowed the determination of the reactivity in dollars for the system close to delayed
criticality without the moderator in place using the IKRD method. The location of the cylindrical tank in
the critical facility cell is shown in Figure 2.1.
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Figure 2.1. Location of the cylindrical solution tank in the experimental cell (raschig ring tank 12 in. from
storage tanks).

2.3 CALIFORNIUM SOURCES

Two Cf sources designated as CF 16 and CF 17 were primarily used for measurements. Additionally, a
much lower neutron intensity source designated as Cf 11 was also used for limited measurements. The
output of the source-emission detection electronics was input to channel 1 of the Fourier processor. On
June 19, 1981, the smaller source (Cf 11) had a detected (with the discriminator threshold) fission rate of
41,338 fission per second.

The Cf sources were electroplated on one plate of a parallel plate ionization chamber. The use of a source
in an ionization chamber allowed the time tagging of the emission of neutrons from the source, which is
essential for the CSDNA method. The configuration of the ionization chamber is shown in Figure 2.2.
The typical composition of one of the sources is given in Table 2.3. The fraction of neutrons from 22Cf
was 0.99761, as measured at the source fabrication facility on April 25, 1981, and the measured Cf
amount was 14.3 ug. A detailed Monte Carlo model of this source is given in NEA benchmark report
SUB-HEU-SOL-THERM-002 [6], and a detailed sketch of the Monte Carlo model from this benchmark
is given in Appendix A.
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Figure 2.2. Configuration of the doubly contained stainless steel ionization chamber
(1 cm diameter Cf deposit not to scale).

Table 2.3. Typical composition of the Cf source.

Isotope Wt. percent
249 11.54
250 21.37
251 8.58
252 58.51
253 <0.001
254 <0.001

The count rate of Cf 11 as a function of discriminator threshold is given in Table 2.4 and plotted in Figure
2.3. A discriminator threshold of 170 mV was chosen as the threshold with a count rate of 74,570 fissions
per second on March 21, 1979.

The source intensities for Cf 16 and 17 were determined when the system was returned to ORNL on
November 16, 1981 by comparison to Cf 11 whose intensity was better known. In particular, the
intensities of Cf 16 and 17 were determined by comparing neutron count rates to those of Cf source 11 for
a common source geometry. This procedure was required for these larger sources because of the inability
to distinguish the fission pulses from some of the alpha pulses (30 times more humerous than the fission
pulses) due to alpha pulse pile up. Instead, the rates of helium proportional counters in paraffin moderator
detected thermal neutrons and unmoderated fast neutrons.



Table 2.4. Detection rate vs discrimination threshold for Cf-11 on March 21, 1979.

Threshold (mV) Counts per s
50 3,083,000
60 1,599,000
70 623,200
80 235,700
90 117,000

100 87,080
110 78,740
120 76,380
130 76,330
140 75,150
150 74,790
160 74,650
170 74,570
180 74,550
190 74,580
200 74,340
210 74,180
220 73,620
230 72,970
240 72,100
250 70,920
300 61,890
350 52,590
400 45,740
450 40,220
500 35,780
550 32,010
600 28,970
650 26,220
700 23,540
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Figure 2.3. Counts per second as a function of discriminator setting for Cf source 11
on March 21, 1979.

The ratio of count rates for Cf 16 and 17 to Cf 11 on November 21, 1981, are given in Table 2.5.
Measurement was performed with unmoderated proportional counters (fast neutron detection) and
moderated proportional counters (thermal neutron detection)

Table 2.5. Relative Cf source intensity ratios.

. Fast neutron Thermal neutron
Ratio . . Average
counting counting
Cf17/Cf11 63.6 68.6 66.1
Cf 16/Cf 11 157.8 160.3 159.0

The average ratios were 66.1 and 159 for Cf sources 17 and 16, respectively.

24 DETECTORS

Two types of neutron detectors were used: Li glass scintillators and *He proportional counters. The Li
glass scintillators were 1.5 in. in diameter and 1 in. thick and were used for the ratio of spectral density
measurements. The Li glass scintillator identification numbers were 237 (used as input for channel two of
the Fourier processor) and 239 (for channel three). The glass contained 6.6 wt. % Li with 95 wt. % °Li.
These detectors had 0.635-cm-thick lead on the front and sides to reduce the sensitivity to gamma rays.
These detectors are described in Reference 7.

The moderated *He proportional counter was located on the surface of the cylindrical solution tank in the
direction away from the solution storage tank (Reuter Stokes model P4-0810-251) and was used for
Feynman measurements. The other one was about 6 ft from the solution tank (P4-0810-207) and was used
for IKRD measurements to determine the initial and final reactivity for configurations closer to critical.

In addition to the ORNL detectors, three neutron counters were associated with the critical facility cell.
These counters were located inside and adjacent to the walls of the reflector tank in which the cylindrical



experimental solution tank was located. One (#3) was on adjacent to the side of the reflector tank that
viewed the Cf source directly when it was located on the outside surface of the cylindrical tank. This
detector was in the direction of the facility’s small-diameter horizontal storage tanks. The other two (1
and 2) were located on the opposite side of the reflector tank with the experimental solution tank between
the source and the detectors when the source was on the outside adjacent to the radial surface of the
experimental tank. The bottoms of these moderated thermal neutron detectors were 16, 14.5, and 0 in.
above the bottom of the tank for detectors 1, 2, and 3, respectively, for the measurements with the source
pipe inserted. For the measurement with the source external, the bottom of detector 2 was 21 in. above the
bottom of the reflector tank. These detectors were used to determine the ratio of total fission to those
inherent source fissions. These ratios were determined from the count rate with the Cf source inserted to
that with the Cf source removed. For ratios with the source, external counters 1 and 2 were used, and for
measurements with the source pipe inserted in the center of the solution, all three counters were used.
These detectors normally have a background count rate of a few counts per second. The background
count rate could not be measured because of the Pu solution in the experimental cell, so it was assumed
that the background for an isolated detector was negligible.

However, there were considerable counts from the solution in the storage tanks which was measured. For
low solution heights and with measurements with the source on top, there may be counts in the detector
from neutrons directly from the source.

3. MEASURED RESULTS

Two configurations of the experimental cylindrical solution tank existed: one with a cylindrical tube on
the axis of the cylindrical tank and the other without the axial tube. The tube was used for location of the
Cf source in the solution.

3.1 MEASUREMENTS NEAR DELAYED CRITICAL

The measurements near delayed criticality were performed for both configurations of the experimental
tank—one without the axial source insertion pipe and the other with the axial source insertion pipe that
could contain the Cf source.

3.1.1 Measurement without the Axial Pipe

The reactivity of this configuration with a solution height of 53.18 cm was determined by IKRD
measurements. On July 21, 1981, this measurement was performed with the detectors and source adjacent
to the outer surface of the tank and 120° apart. The safety rod was a hydrocarbon reflector adjacent to the
solution tank. For the IKRD measurement, the reflector was removed rapidly from the position adjacent
to the tank. The final reactivity with the reflector removed was minus 2.98 dollars and the effective
delayed neutron fraction of 0.00283 corresponds to a neutron multiplication factor, ket = 0.9916. Inverse
count rate measurements and ratio of spectral density as a function of solution height measurements
resulted in extrapolated critical heights of 56.7 cm for the ratio extrapolation, 56.1 for the extrapolation of
inverse count rates from the ORNL detectors, and 56.1 for the extrapolation of the inverse count rated
from the Pacific Northwest laboratory detectors. The count rates as a function time in the IKRD
measurements slightly below delayed critical are given in Appendix B. These data will have to be
reanalyzed with present-day delayed neutron parameters for the final benchmark analysis. The value of
the effective delayed neutron fraction will also have to be recalculated for conversion of the reactivity in
dollars to neutron multiplication factor units for the final benchmark values.



3.1.2 Measurement with the Axial Pipe

Similar measurements were performed for the tank with the central pipe. The subcritical reactivity from
the IKRD measurements was 2.85 dollars for a solution height of 60.68 cm, and with the same value of
the delayed neutron fraction, gives a ke = 0.9920. The count rates as a function time in the IKRD
measurements are given in Appendix B. These data will have to be reanalyzed with present-day delayed
neutron parameters for the final benchmark analysis. The value of the effective delayed neutron fraction
will also have to be recalculated for conversion of the reactivity in dollars to neutron multiplication factor
units for the final benchmark values.

3.2 SUBCRITICAL MEASUREMENTS

CSDNA subcritical measurements were performed for a variety of configurations. Fitting these data can
provide the break frequency, which is related to the prompt neutron decay constant. Close to delayed
criticality, IKRD measurements were performed to obtain the final reactivity after the safety blades were
removed. Additionally, for some of the configurations, the response of external detectors to the insertion
of the Cf source was measured.

3.2.1 Ratio of Spectral Densities

The measured ratios of online spectral densities are given in Tables 3.1 and 3.2 with their uncertainties for
all subcritical measurements. These values were obtained at the time of the measurements by visual
observation of the plots of the ratio of spectral densities as a function of frequency. These values are the
constant values at low frequency and were averaged over the region at low frequencies visually chosen
where they were constant. For final analyses of these measurements, a more quantitative choice of the
frequency range where the values are constant should be made. This is usually done varying the upper
limit of the frequency range for the averaging and choosing the average value with the lowest standard
deviation. Where there are blanks or experimental runs are not listed, the data were bad or lost at the
measurement site. These tables also contain the break frequency obtained by only fitting the cross power
spectral densities between the two detectors where the break frequency is related to the prompt neutron
decay constants by the relationship that the prompt neutron decay constant equals 27 times the break
frequency. For the final determination of the break frequency, the data for the auto power spectral
densities for the two detectors and the real and imaginary parts of the cross power spectral densities
between the detectors and the source and that between the two detectors (eight functions) should be fitted
simultaneously, as illustrated in Appendix D. Once these break frequencies are determined, break
frequency noise analysis methods can be used to determine the neutron multiplication factor accurately
down to Kess = 0.80.

Table 3.1. Ratio of spectral densities with the source CF 16 and detectors outside.

Cf Ratio of Source .
. Detector Break Ratio
Run Solution source ; spectral detector .
: . : height . - frequency source in to
number | height (in.)| height (in) densities separation (s)2 out
(in)) ' (%1032 (degrees)
AA 20.90 10.45 10.45 | 1.2046 + 0.0400 120 464 (489)
AB 20.90 10.45 10.45 | 1.0720 £ 0.0400 120 468 + 1 (480)
AC 19.44 9.72 9.72 2.188 £ 0.008 120 806 +2 (870)
AD 17.52 8.76 8.76 3.668 + 0.100 120 1,348 + 10 (1,429) 4.03
AE 17.52 8.75 8.75 4.106 + 0.130 120 1,324 £ 12 (1,381)
AF 14.50 7.25 7.25 NA 120 2,522+ 22 4.28




Cf Ratio of Source .
Run Solution source Det_ector spectral detector Break Ratlp
number | height (in.)| height hglght densities separation freqﬂe?cy source in to

(in)) (in.) (x109)2 (degrees) 9 out
BA 17.50 8.75 8.75 NA adjacent 363+£9.5
BB 15.87 8.0 8.0 5.064 + 0.200 120 1,875 + 16 (1,918) 4.13
BC 14.50 7.25 7.25 6.256 + 0.360 120 2,478 + 41 (2,566) 431
BD 13.05 6.525 6.525 7.608 + 0.140 120 3,172 + 17 (3,091)
CA 15.87 7.93 7.93 2.450 +0.16 adjacent 1,907 + 36 4.26
CB 15.87 12.0 8.0 3.838 120 1,889 + 14 3.66
CcC 15.87 10.0 4.0 3.263 120 1,805 +35
CD 15.87 4.0 4.0 4.109+0.2 120 1,849 + 26
CE 15.87 8.0 8.0 4977 +£0.20 120 1,782 + 26 (1,927)
CF 11.2 55 55 10.55+0.30 120 4,107 + 49 (4,152) 4.28
DA 19.27 10.0 10.0 1.356 £ 0.07 120 50+2
DB 21.05 10.53 10.53 0.542 +0.04 120 NA
DC 20.59 10.30 10.30 1.347 £ 0.04 120 605 + 4 (595)
DD 10.0 5.0 5.0 11.77+0.30 120 4,770 £ 190 (5,077) 4.18
EA 9.8 5.0 5.0 6.755 adjacent 3,444
EB 8.91 45 4.5 10.28 120 7,190 + 326
FA 8.0 4.0 4.0 11.13 120 7,209 (7,049) 4.39
FB 7.06 35 3.5 1055+ 2.0 120 8,086 (9,285)

aWhere uncertainties are not given, they were not recorded online.
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Table 3.2. Ratio of spectral densities for measurements with the central Zircaloy source tube with the source
CF 17 and 16 with detectors outside.

Solution Cf Detector Source Ratio of Ratio of Cf
Run . Cf |source . detector spectral Break frequency source
number hg'r?;]t source | height hg'r??t separation densities (she response in
: (in.) ' (degrees) (%1022 to out
GA 17.8 17c 9.0 9.0 180 4,061+£0.05 | 1,543+16(1,661) 7.85
GB 17.8 17c 9.0 9.0 180 5.473 + 0.06 1,531 +16
GC 17.8 16¢ 9.0 9.0 180 3.859+0.05 | 1,566 + 268 (1,662) 17.60
GD 17.8 16¢ 9.0 9.0 180 2.570+0.05 | 1,653+ 374 (1,873)
GE 17.8 17c 9.0 9.0 180 3.771+0.06 | 1,610+6.9 (1,695)
GF 9.91 17c 5.0 5.0 180 18.105+0.20 | 5,339 +£97 (7,271)
HA 16 17c 8.0 8.0 180 6.279 + 0.070 1,705 +10
HB 16 17c 8.0 8.0 180 7.62 +0.060 2,190 +20 (2,523)
HC 16 17c 16 8.0 180 0.9446 £0.04 | 2,312 +52(2,312) 2.15
HD 14 17c 7.0 7.0 180 11.48+0.3 3,721+ 209 5.7
HE 14 17c 7 7 180 10.44 £0.24 | 3,002.6 + 36 (3,512)
HF 14 17c 14 7 180 2.94+0.1 3,109 +88 (3,325)
HG 12 17c 6 6 180 13.88 £0.2 4,023 + 89 (4,949)
HH 8 17c 4 4 180 22.57+0.20 | 7,163+ 190 (11,114)
1A 16 17s 8 8 120 0.753+0.03 | 2,308 + 25 (2,254)
IB 16 17c 16 8 180 1566 £0.04 | 2,298 + 23 (2,321) 2.27
IC 14 17c 7 7 adjacent 8.56 + 0.20 3,966 + 9 (4,519) 7.35
ID 14 17s 7 7 120 0.912 £ 0.05 3,228 + 67 2.27
IE 14 17c 7 7 adjacent | 10.12 £0.15 3,495 £ 58 7.62
IF 14 17c 7 7 ? 9.62+0.2 3,608 + 60 3.537
IG 12 17c 12 6 180 4,084 +£0.10 | 3,988 + 88 (3,988)
IH 9.92 17c 9.92 5.0 180 6.743+0.20 | 6,359 * 256 (7,527) 4.06
1 6 17c 3 3 180 25.8+0.8 | 16,813 +960 (20,755)
JA 14 17c 7 3.5,10.5 0 8.7+0.12 3,285 +59 7.58
JB 14 17c 7 7 180 NA NA
JC 14 16¢ 7 7 180 6.93+0.1 3,063+ 39
JD 14 16¢ 7 7 180 9.00+0.2 NA
JE 14 16¢ 7 7 180 469+0.1 3,086+ 35
JF 14 17c 7 7 180 7.46+0.2 3,109+ 44
JG 12 17s 6 6 120 1.281+£0.05 | 4,156 + 87 (4,156) 2.25, 206
JH 8 17c 4 4 180 21.7+0.3 7,394 £221 10.2
KA 17.9 17c 17.9 8.95 180 1.0736 £0.03| 1,635+ 23 (1,763) 3.217
KB 17.9 17s 8.98 8.95 120 0.577£0.02 | 1,664 +14.7 (1,751) 3.10
KC 17.9 none - 8.95 180 NA NA
KD 14 none - 7 180 NA NA
KE 8 17c 8 4 180 122+0.7 11,115 + 632 2.507, 1.95
LA 10 17c 10 5 180 7.14 NA 10.06
LB 6 17t 6 3 180 14.8+0.7 18,227 + 1,359
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Solution Cf Detector Source Ratio of Ratio of Cf
Run ; Cf |source . detector spectral Break frequency source
number hg'r?f;t source | height hg'r?r)]t separation densities (she response in
' (in.) ' (degrees) (x102)? to out
MA 5 17c 2.5 2.5 180 29.2+1.0 19,250 £1,314
MB 4 17c 2 2 180 NA NA
NA 23.89 17¢ | 11.95 | 11.95 180 1.309 £ 0.01 475+ 2
NB 21.8 17c 115 11.5 180 2.713£0.03 828 +25
NC 21.8 17c 21.8 10.9 180 3.766 £0.01 846 +2
ND 21.8 17s 10.9 10.9 180 2.639 £ 0.01 853 +24 2.06
NE 19.94 17c 9.97 9.97 180 4.155 +0.04 NA (1254)
NF 19.94 17t | 19.94 9.97 180 6.03 £ 0.02 NA (1280)
NG 19.94 17s 9.97 9.97 120 0.4628 1,288 + 5.6 (1,232)
NH 4 17c 2 2 180 NA NA
OA 16 17c 8 8 180 8.20+0.1 2,425 £ 39
OB 16 17¢ 8 8 180 8.29+0.1 2,409 £ 27
oC 16 17c 8 8 180 4.764 + 0.06 NA
oD 14 17c 7 7 180 10.8+0.1 NA
OE 12 17c 6 6 180 Not available NA

@The entries in parentheses are from the fitting described in Appendix D where all auto and cross power spectral densities are
fitted simultaneously after the measurements were completed. The values not in parentheses are from only fitting the magnitude
of the cross power spectral density where uncertainties are not given they were not recorded online.

The ratio of spectral densities for a limited range of heights is plotted in Figure 3.1 as a function of height
with the source centrally located in the axial Zircaloy pipe. The detectors at the vertical center and the
break frequency as a function of height for the same source and detector locations are plotted in Figure
3.2. The break frequencies were fitted online in a nonoptimum way. The values given are from fitting the
cross power spectral density between the two detectors. The proper fitting should be done by fitting all
auto and cross power spectral densities as is illustrated in Appendix D. This location of the central source
and detector on the outside of the tank 180° apart favor the applicability of point kinetics interpretation of
the ratio of spectral densities for determination of the neutron multiplication factors. These locations also
ensure that most of the coincidences come from extremely large fission chains distributed over the entire

cylindrical fissile solution.
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Figure 3.1. Ratio of spectral densities as a function of solution height with a central source in the axial pipe
and detectors vertically centered on the outside of the tank 120° apart.

Various data can be extrapolated as a function of solution height to estimate the height of the solution at
delayed criticality. Extrapolations of the ratios of spectral densities as a function of solution height were
64.1 cm with the Cf source on the radial surface, 65.2 cm with the Cf source in the axial center of the
axial pipe and extrapolation of the ratio of spectral density, 65.5 cm for inverse count rate extrapolation
with the central source, and 64.3 cm for inverse count rate extrapolation with the source on the radial
surface.
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Figure 3.2. Break frequency as a function of solution height with a central source in the axial pipe and
detectors vertically centered.
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Prior to the measurements, calculations were performed for the measurement with the source adjacent to
the radial surface of the tank for a solution concentration of 450 g/L rather than the actual concentration
of 468 g/L. When repeated with the proper solution concentrations and experimental solution heights for
both configurations of the tank (with and without the central source tube), these calculations can be used
to interpret the ratio of spectral densities and the break frequencies to infer the neutron multiplication
factors. However, the results of these previous calculations are presented in an Appendix E.

3.2.2  Correction to Ratio of Spectral Densities for Uncounted Californium Fissions

The parallel plate ionization chambers used for these measurements do not count all the Cf fissions. The
uncounted Cf fissions for these chambers were determined using higher-order correlations developed by
Mattingly in his dissertation [8] in 1995. These uncounted fissions contribute to cross power spectral
densities in the denominator of the ratio of spectral densities but not in the numerator. All measurement
before Mattingly’s work requires this correction to the ratio before determining the neutron multiplication
factor. A measurement is performed with the Cf source of low intensity to ensure that no pulses from
alpha decay are counted with the source and two detectors (1 and 2) spaced in air about 50 cm from the
source and 180° from the source. This location ensures that cross talk between from the same particle
from the source is negligible. The cross power spectral density between both detectors, Gi, contains
contributions from all Cf fissions while the higher-order spectral density, Gsi2, contains only
contributions from Cf fissions that have been detected. The ratio Gsi2/Ga2 is the fraction of Cf fission
counted. This value was measured to be 0.96, and the denominator of the ratio of spectral densities needs
to be multiplied by 0.96. The online ratios of spectral densities must be multiplied by 1.04 before
determination of the subcritical neutron multiplication factor. After this correction for undetected Cf
fissions, the values of (1-Kes)/Kerr could increase by about 4%, resulting in the neutron multiplication
factor from the interpretation being reduced.

3.2.3 Needed Additional Analysis of the Ratio of Spectral Densities

For other than the direct benchmark calculation of the ratio of spectral densities [9], these ratios will have
to be interpreted using the point kinetics models to obtain the subcritical neutron multiplication factor,

kesr. Two models exist for this interpretation: the Pare/Mihalczo [10] and Akcasu/Stolle [11]
interpretation, the former in which detection of the first event in a coincidence between the two detectors
does not affect the next count, and the Akcasu/Stolle model where it does. Ever since this was originally
pointed out by Difilippo in 1986 [12] the author’s analysis of the ratio of spectral density data has been
done by both methods and has consistently shown that the Akcasu/Stolle model gives incorrect neutron
multiplication factors at values below ket = 0.80. It is expected that this will also be the case for these data
but in any case should be done to verify. These inferred neutron multiplication factors can be compared
with the calculations in the benchmark analysis.

3.3 NEUTRON COUNT RATES

The ratio of count rate with and without the Cf source is needed in the analysis of the ratio of spectral
densities to obtain the subcritical neutron multiplication factor. It can be obtained by measurement of the
count rate in external detectors with and without the Cf source in the location for the measurement of the
ratio of spectral densities. With the source inserted, the count rate is related to the total fission rate
induced by Cf and the inherent source fission from the 2*°Pu. With the Cf source removed, the count rate
is related to the inherent source fission. This ratio can be expressed as (F¢ Ic vc + Fi li vi) / (Fi livi), where
Fc is the Cf fission rate, I is the importance of Cf neutrons for causing fission, and v. is the number of
neutrons per Cf fission with similar quantities defined for fission induced by the inherent source neutron
from 2%Pu. The results of these measurements are given in Tables 3.3 and 3.4. Additional count rates are
given in Appendix C. These count rates can also be used to determine the subcritical neutron

14



multiplication actor down to kess = 0.90 using the modified source neutron multiplication analysis method
[13], which accounts for changes in detection efficiency and source effectiveness as the solution height is

decreased.

Table 3.3. Counts in 80 s with and without the Cf source present for measurements with
the source on the radial surface.

Run Solgtion Cf Cf source Detector 1 count rate Detector 2 count rate
number hg'r?f;t source hg'r?;‘t (counts per 80 s) (counts per 80 s)
AEa 17.8 16 in 9.0 <44,013> <45,324> <45,324>
17.8 16 out 10,832 11,448
AFb 14.5 16 in 7.25 24,142 25,557
14.5 16 out 5,692 6,158
BCa 144 16 in 9.0 23,667 25,316
144 16 out 5,600 6,000
BCa 13.05 16in 6.5 <18,646> <20,044>
16 out 4,371 4,688
CAa 13.05 16 in 6.5 18,597 20,037
16 out 4,371 4,688
CAa 15.87 16 in 8 31,200 32,300
16 out 7,449 7,933
CBa 15.87 16 in 6.5 27,273 29,043
16 out 7,449 7,939
CDa 11.2 16 in 6.5 <13,514> <15,356>
16 out 3,149 3,594
DDA 10.0 16 in 5 <10,821> <12,751>
16 out <2,619> <2,988>
FAa 8.0 16 in 4 <8,539> <10,529>
16 out <2,034> <2,395
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Table 3.4. Counts in 80 s for measurements with the central Zircaloy source tube

with the source CF 17 and 16 with detectors outside.

- Cf source Detector 1 Detector 2 Detector 3
Run Solution Cf . count rate count rate count rate
number height (in.) source hg'r??t (counts per (counts per (counts per
' 80s) 80s) 80s)
GCa 17.9 171in 9.0 <75,926> <75,643>
out 9,536 9,837
17.9 16 in 9.0 <171,261> <170,565>
HEa 14 17 in top 14.0 16,787 17,239 19,075
out <4,803> <4,971> <5,227>
14 17inc 7.0 36,481 35,973 43,181
HEa 16 17 in top 16 15,910 15,910 18,078
out 6,824 7,030 7,684
14 17inc 8 53,817 52,386 63,502
HGa 12 171in 6.0 25,889 26,113 30,796
out 3,546 3,767 3,827
HHa 8 171in 4 12,829 13,812 13,890
out 2,099 2,413 2,033
IBa 16 17 in top 16 21,108 21,891 23,267
out 6,631 7,093 7,570
IBa 16 17inr 8 14,951 16,217
IBa 14 17inr 7 10,719 11,843
out 4,651 5,108 5,265
14 17inc 7 <35,572> <36,799> <42,523>
IBa 10 17 in top 10 10,548 11,592 11,045
out 2,584 3,007 2,603
IHa 12 17 in top 12 13,125 14,537 14,018
out 3,482 3,367 3,531
JBa 14 17inc 7 <36,008> <35,903> 41,873
out 4,579 5,758 5,211
Background 0 No solution NA 1,231 1,389 1,161
JBa 6 17inc 3 <9,543> <10,176> <10,003>
out 1,752 2,067 1,718
Background 0 No solution NA 1,248 1,392 1,170
JHa 13.95 17inc 7 <34,984> <34,984> <42,010
out 4,579 5,158 5,211
13.95 16inc 7 78,330 81,319 94,053
Background 0 No solution NA 1,239 1,391 1,155
JHa 12 17 radial 6 7,895 9,164
out 3,442 3,926 3,538
KAa 8 17inc 4 12,979 13,726 13,809
out 2,108 2,438 2,007
17.9 17 c top 17.9 <28,441> <29,203> <33,111>




Cf source Detector 1 Detector 2 Detector 3
Run Solution Cf hei count rate count rate count rate
: g eight

number height (in.) source (in) (counts per (counts per (counts per
' 80s) 80 s) 80s)
out 9,619 10,110 11,093
17 radial 17.9 21,499 2,2619 31,739
LAa 10 17¢c 5 17,177 18,089 18,509
out 2,593 2,867 2,569
LAa 6 17¢c 3 6,317 6,889 6,422
out 1,725 2,015 1,618
LBa 5 17¢c 2.5 7,806 8,526 8,218
out 1,615 1,852 1,553

These count rates can be used for benchmarks if the location of the Pacific Northwest National
Laboratory detector and their configuration can be defined accurately from the critical facility logbooks
and the operations manual for the facility. The count rates may be affected by the proximity of the facility
solution storage tanks, which were 39 in. from the rectangular reflector tank that surrounded the
cylindrical tank. For lower solution heights, a contribution exists from the storage tanks that contributed
to the count rate, and this could not be separated experimentally. The amount of fissile solution in the
storage tanks is a function of how much solution is in the cylindrical experimental tank. In Table 3.4,
there are some background count rates with all of the solution in the storage tank and the cylindrical
experimental vessel empty. Perhaps the best way to get the ratio of fission rates is from calculating the
fission rates with and without the source.

3.4 RATIO OF TOTAL FISSION TO THOSE INDUCED BY CALIFORNIUM

This ratio is needed in the analysis of the ratio of spectral densities to obtain the subcritical neutron
multiplication factor. It can be obtained by measuring the count rate in external detectors with and
without the Cf source in the location to measure the ratio of spectral densities. With the source inserted,
the count rate is related to the total fission rate induced by Cf and inherent source fission from the 24°Pu,
and with the Cf source removed, the count rate is related to the inherent source fission. This ratio can be
expressed as (Fc Ic ve + Fi I; vi)/(Fi livi), where Fc is the Cf fission rate, I. is the importance of Cf neutrons
for causing fission, and v is the number of neutrons per Cf fission with similar quantities defined for
fission induced by the inherent source neutron from 2°Pu. The results of these measurements are given in
Tables 3.3 and 3.4.

4. SUMMARY OF ADDITIONAL PROCESSING OF EXPERIMENTAL

The parameters needed to interpret the ratio of spectral densities need to be recalculated for the cylindrical
tank both with and without the central Zircaloy source pipe. The original data need to be reexamined to
better determine the ratio of spectral densities. To examine the original CSDNA data, additional work has
to be done on the data (which was acquired on a VAX computer) with present computers to convert into a
modern format for analysis. These ratios can be calculated directly, as described in Reference 8. Then, the
ratio of spectral densities can be interpreted to obtain the subcritical neutron multiplication factors.
Uncertainty analysis needs to be performed to determine the experimental uncertainty in the experimental
multiplication factors, which can then be compared with calculations.
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The auto and cross power spectral densities need to be refitted simultaneously to better determine the
break frequency from which the prompt neutron decay constant can be obtained. These values can be
compared with calculation by Monte Carlo or S, transport theory methods. The neutron lifetime and
delayed neutron fractions need to be calculated as a function of solution height for the measurements with
and without the central Zircaloy source pipe. Break frequency noise analysis can then be used to
determine the subcritical neutron multiplication factor, which is usually accurately down to ke = 0.80.

5. CONCLUSIONS

Near critical and subcritical Cf source-driven noise analysis (CFDNA) measurements have been
performed for a mixed U (188.4 g/L) Pu (280.4 g/L) nitrate solution in a cylindrical tank. The experiment
tank was of stainless steel with a height of 56.72 cm, a diameter of 35.38 cm, an outside diameter of 35.54
cm, and a height of 56.72 cm. The thickness of the bottom of the stainless-steel tank was 0.9525 cm. The
reentrant tube into the solution for the Cf source was Zircaloy with a density of 6.57 g/cm?. The inside
diameter of the reentrant tube was 2.7788 cm; the outside diameter was 3.1496 cm, and the bottom
thickness was 0.635 cm. The bottom of the solution tank was 6.25 in. above the bottom of the large empty
reflector tank that surrounded the cylindrical solution tank. The neutron multiplication factor determined
from the inverse kinetics rod drop near delayed critical for the tank without the central source pipe was
kerr = 0.9916 with a solution height of 53.18 cm. The neutron multiplication factor determined from the
inverse kinetics rod drop near delayed critical for the tank without the central source pipe was Kes =
0.9920 with a solution height of 60.70 cm.

This report summarizes the experimental data and points out additional experimental evaluation of the
data to convert it into a form where information for the measurements performed can be used at a later
date. Researchers could perform the required uncertainty and calculational analyses and documentation to
use these data for an International Criticality Safety Benchmark Program (ICSBEP) or Nuclear Energy
Agency benchmark. The data from these measurements are available from the Oak Ridge National
Laboratory Records Management Services Department, and the logbook is available from ICSBEP at
Idaho National Laboratory.
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APPENDIX A. SKETCH OF THE MONTE CARLO MODEL OF THE
CALIFORNIUM IONIZATION CHAMBERS

A sketch of the Monte Carlo N-Particle (MCNP) model of these ionization chambers is given in Figure
A.1. An MCNP model can obtained from the International Nuclear Criticality Safety Benchmark
Program/ Nuclear Energy Agency benchmark report SUB-HEU-SOL-THERM-002.
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Figure A.1. Sketch of the MCNP model of the Cf ionization chambers.



APPENDIX B. INVERSE KINETIC ROD DROP MEASUREMENTS
CLOSE TO DELAYED CRITICAL

In these measurements, the solution in both cylindrical tanks was raised to a height for which the systems
were above delayed criticality with the safety (moderator) blade adjacent to the tank surface. The fission
rate was increased until it was sufficiently high that the sources present contributed negligibly to the
fission rate. Then the solution height was lowered until the systems were at delayed criticality, and the
fission rate was maintained at a constant rate until the delayed neutrons had come to equilibrium (over 10
min). The systems remained at this constant level for some time while the count rate was recorded before
the safety (moderator) blade was removed quickly. The count rate continued to be recorded as the fission
rate decreased to a constant low level. After the initial prompt, neutron decrease, the shape of the decay
was determined by the properties of the delayed neutrons, source intensities, and reactivity. These data
were acquired on a Technical Measurements Corporation multichannel time analyzer with 1,028 0.2 s
time intervals. These data are presented in Figures B.1 and B.2. These data should be reevaluated for the
benchmark with the present data for the delayed neutrons. The uncertainties in the delayed neutron
parameters can be used to determine the uncertainties in the reactivities after the safety blade was
removed. In these tables, the first column on the left is the time interval, entry 1 is time zero, and the last
entry of the first line is that for time = 1.40 s. The entry in the second column is for time 1.60 s, and the
last entry on the second line is for time 3.00 s, and so on. Time increases to the right and down. Missing
values will have to be interpolated for the final reactivity determination from the inverse kinetic rod drop
data.
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Table B.1. Count rate as a function of time every 0.2 s before and after the safety blade removal for the
inverse kinetic rod drop measurement for the tank with the central Zircaloy source insertion pipe and a
solution height of 60.68 cm. (Page 213 of ORNL loghook H00227; column 1 is the multichannel analyzer channel
number).
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Table B.2. Count rate as a function of time every 0.2 s before and after the safety blade removal for the IKRD
measurement for the tank without the central Zircaloy source insertion pipe and a solution height of 53.18
cm. (Page 113 of ORNL logbook H00227; column 1 is the multichannel analyzer channel number).
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APPENDIX C. ADDITIONAL NEUTRON COUNTING INFORMATION

This appendix lists additional count rate information with the Cf source inserted and removed and with no
source and no solution in the cylindrical tank.

Table C.1. Detector count rate as a function of fuel solution height for various 22Cf source locations.
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APPENDIX D. BREAK FREQUENCY NOISE ANALYSIS AND PROMPT
NEUTRON DECAY CONSTANT

This appendix defines the break frequency [D.1] and presents data from another measurement to show
how the data is fitted [D.2] to determine the break frequency. The break frequency, sometimes called the
cutoff frequency, is the frequency at which the response initiates its decrease (Figure D.1). This frequency
is determined by fitting the cross or auto spectral densities to an amplitude and a break frequency. The
data can be fitted to one break frequency because the point kinetics model is applicable, which is usually
true for neutron multiplication factors above 0.80. At further subcritical, this model does not work
because the data cannot be fitted in this manner to a single break frequency. This gives a quantitative
estimate of when point Kinetics interpretation cannot be used for this method.
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Figure D.1. Definition of the cutoff or break frequency. [Courtesy of Wikipedia, “Cutoff
frequency”https//en.wikipedia.org>wild>cutofffrequency]|

The prompt neutron decay constants were obtained by simultaneously fitting the auto power spectral
densities of detectors 2 and 3, the real and imaginary parts of the cross power spectral densities between
the detectors and the source, and the real and imaginary parts of the cross power spectral densities
between the two detectors. In this simultaneously fitting, all eight functions of frequency were corrected
for the frequency response of the measurement systems. The frequency response was determined in
separate measurements with only the source and two detectors spaced in air. This fitting determined the
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break frequency (fu), which is related to the prompt neutron decay constant (o) by the relation o = 27xfh.
The measured prompt neutron decay constants presented in Table B.1 increase in magnitude as the system
becomes more subcritical. For some of the configurations, the prompt neutron decay constants were
obtained from single mode fits of the measured spectra, while for other configurations two mode fits were
performed for the measured spectra. Examination of the real and cross power spectral densities is plotted
as the abscissa and the imaginary part is the ordinate, single mode decay, characterized by the resulting
curve being in the fourth quadrant (i.e., real part > 0 and imaginary part < 0). Some results for one
configuration of another experiment are given in Figures D.2 and D.3 [D.2]. A change of sign of either
the real or the imaginary part of Gzzsignifies the presence of higher modes. The prompt neutron decay
constants vary from 290 + 9 inverse seconds at delayed critical to ~15,000 inverse seconds for a
configuration of 289 fuel pins with 1,511 ppm boron. An example of some results of the fitting are given
in Figures D.2 and D.3.
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Figure D.2. Real and imaginary parts of the cross power spectral densities between the two detectors (2 and
3) and the californium source (1) for a fuel pin configuration of 4,962 fuel pins with a boron concentration of
2,386 ppm for detector 2 located at 30.4 cm SE-S-SW and detector 3 located at 30.4 cm NE-N-NW (the solid

lines are the results of fitting all eight functions simultaneously).
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Figure D.3. Real and imaginary parts of the cross power spectral density between the two detectors (2 and 3).
Auto power spectral densities for detectors 2 and 3 for a fuel pin configuration with a boron concentration of 2,386

ppm for detector 2 located at 30.4 cm SE-S—SW and detector 3 located at 30.4 cm NE—N-NW (the solid lines are
the results of fitting all eight functions simultaneously).
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APPENDIX E. PARAMETERS FOR INTERPRETATION OF RATIO OF
SPECTRAL DENSITIES

These parameters for interpretation of the ratio of spectral densities were calculated for the measurements
with the californium source on the outside of the tank before the measurements for a solution of 450 g/L,
whereas the actual experiment solution concentration was 468 g/L. The concentrations were sufficiently
close that they could be used to obtain the neutron multiplication factor from the ratio of spectral densities
using point kinetic methods. The calculated parameters for the measurements with the californium on the
outside of the tank without the central source pipe at the vertical center are given in Table E1. However,
for eventual interpretation of the ratio of spectral densities the measurements with the californium source
in the center of the tank should be used to infer the neutron multiplication factor. From other
measurements a central source and symmetric location of detectors far from the source has been ideal for
interpretation to obtain the neutron multiplication factor from the ratio of spectral densities.

Table E.1. Parameters for interpretation of the ratio of spectral densities with source on outside of the tank.

Number
Solution | Californium Beta Neutron Spatial of
height | importance, Io/1 li/l - lifetime Keri® effects (R) | neutrons
effective 6 : -
(cm) lc (10°5s) correction | per fission
v)
50 1.1260 0.3705 0.7168 2.7909 4.1426 0.9941 1.1766 2.8796
40 1.3519 0.3682 0.7266 2.8283 4.1301 0.9606 1.1713 2.8801
30 1.6818 0.3679 0.7482 2,8946 4.1995 0.8994 1.1692 2.8800
20 2.1856 0.3724 0.7967 3.0413 4.0301 0.7717 1.1732 2.8806
10 2,8692 0.3884 0.9113 3.4480 3.7541 0.4575 1.1869 2.8876
2 Calculated.

For the final benchmark analysis to determine the neutron multiplication factor from the ratio of spectral
densities, these numbers should be recalculated for the experimental tank with and without the central
Zircaloy source pipe. Changes in the neutron lifetime and delayed neutron fraction will have to be
calculated for the break frequency noise analysis determination of the subcritical neutron multiplication

factor.
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